Additional Exercises 5.2 Form I Solving Systems of Linear equations by the Substitution Method Solve each system by the substitution method. If there is no solution or infinitely many solutions, so state. Use set notation to express solution sets. 1. $$y = x + 3$$ $$x + 2y = 18$$ $$2x - 2y = 2$$ $$x = 3y + 5$$ $$3x - 2y = 9$$ $$y = 2x - 5$$ $$\begin{aligned} 2x - y &= 15 \\ y &= x - 5 \end{aligned}$$ $$5. \qquad 3x + 3y = 12$$ $$x = 4 - y$$ $$6. \qquad 3x + y = 10$$ $$5x - 2y = 2$$ 7. $$x-5y = 35$$ $4x + 2y = 8$ 8. $$12x - 4y = 16$$ $$3x - y = -4$$ 8. _____ 9. $$5x + y = -10$$ $2x - 6y = -4$ 9. _____ 10. $$x + 8y = -56$$ $-2x + 9y = -63$ 10. _____ 11. $$6x + 4y = 12$$ $2x - 2y = -14$ 11. _____ 12. $$3x - 2y = 25$$ $4x + 8y = -20$ 12. _____ $$13. \qquad 2x + 3y = 9$$ $$3x + 2y = 1$$ 13. _____ 14. $$2x + y = 14$$ $4x + 2y = -28$ 14. _____ $$15. \qquad x = 8 - 5y \\ x = 3y - 8$$ 15. _____ 16. _____ ## Additional Exercises 5.2 Form II Solving Systems of Linear equations by the Substitution Method Solve each system by the substitution method. If there is no solution or infinitely many solutions, so state. Use set notation to express solution sets. $$1. \qquad x = 1 - 6y$$ $$2x + 8y = 6$$ $$y = 3x + 4$$ $$5x - y = 4$$ $$3. \qquad 6x - 2y = 14$$ $$3x - y = 7$$ 4. $$x + 5y = 18$$ $2x + 2y = 20$ 5. $$6x + y = -12$$ $5x + 2y = 4$ $$6. 9x - 3y = 3$$ $$3x - y = 12$$ 7. $$x + 7y = 1$$ $$2x + 8y = 2$$ 8. $$2x + y = 14$$ $6x - 3y = 18$ 9. $$2x + y = 8$$ $$-3x + 2y = -19$$ 9. _____ 10. $$6x - y = -1$$ $6x - 5y = -17$ 10. _____ $$11. 5x - 10y = 6$$ $$x - y = 1$$ 11. _____ 12. $$7x + 15y = 12$$ $x + 9y = 4$ 12. _____ 13. $$x - \frac{3}{4}y = 3$$ $$-2x + \frac{3}{2}y = -5$$ 13. _____ 14. $$\frac{1}{4}x + \frac{1}{2}y = 5$$ $$4x - y = 26$$ 14. _____ 15. $$3x - 2y = 3$$ $$-\frac{4}{3}x + y = \frac{1}{3}$$ 15. _____ 16. $$3x + 6y = 3$$ $2x + 8y = 22$ 16. _____ ## Additional Exercises 5.2 Form III Solving Systems of Linear equations by the Substitution Method Solve each system by the substitution method. If there is no solution or infinitely many solutions, so state. Use set notation to express solution sets. 1. $$4x + 3y = 11$$ $y = 2x - 13$ $$\begin{aligned} 5x - 3y &= 11 \\ x &= 12 + 2y \end{aligned}$$ $$y = 2x + 3$$ $$y = 4x + 7$$ 4. $$x = 5y - 35$$ $5x - 6y = -61$ 5. $$2x + y = 14$$ $4x + 2y = 28$ $$5x + 5y = 0$$ $$x - y = -4$$ 7. $$x + 2y = 32$$ $3x - 5y = -14$ 8. $$4x-12y = 15$$ $x-3y = 4$ 9. $$6x + 4y = 12$$ $2x - 4y = -44$ 10. $$x + 3y = -1$$ $8x - 8y = 4$ 10. _____ 11. $$15x - y = 14$$ $3x - 4y = 18$ 11. _____ 12. $$\frac{4}{5}x + \frac{1}{2}y = 6$$ $$3x + y = 19$$ 12. _____ 13. $$\frac{1}{3}x + \frac{1}{3}y = 0$$ $$x - y = 14$$ 13. _____ 14. $$\frac{1}{2}x - \frac{2}{3}y = -1$$ $$\frac{3}{7}x + y = 18$$ 14. _____ 15. An electronic company kept comparative statistics on two products, A and B. For the years 1980 to 1988, the total number of Product A sold (in thousands) is given by the equation y = 72x + 689 where x is the number of years since 1980. For the same time period, the total number of Product B sold (in thousands) is given by the equation y = -30x + 434, where x is the number is years since 1980. Use the substitution method to solve the system and describe what the solution means. 15. _____ 16. One number is 1 less than a second number. Twice the second number is 19 less than 5 times the first. Find the two numbers. 16. _____